Loi normale

La loi normale (or Gaussienne) est un modèle statistique classiquement utilisé pour estimer l’incertitude d’un capteur. La loi est donné par la formule suivante:

 y(x)=\frac{1}{\sigma.\sqrt{2.\pi}} e^ {-\frac{(x-c)^2}{2\sigma^2}  }

où:


  • \sigma est l’écart-type (racine carré de la variance)
  • c est le centre de la gaussienne

variance=\sigma^2

Voici quelques exemples de lois normales:
Examples

La somme des probabilités doit être égale à un, par conséquent, l’aire suivante a une superficie de un:

Surface

68, 95 et 99.7% de la surface sont inclus respectivement entre \sigma, 2.\sigma and 3.\sigma:
distribution

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *