# Torque, Force and Cross Product

## From force to torque

Let’s consider the body C, rotating around the point O. The force $\vec{F}$ is applied on body C at point A. The torque around O is given by the cross product between the vectors $\vec{OA}$ and $\vec{F}$ : $\vec{\Gamma} = \vec{OA} \times \vec{F}$

## From torque to force

Assuming the torque is known, the force at point A is given by: $\vec{F} = \frac {\vec{\Gamma} \times \vec{OA} } { \| \vec{OA} \| ^2 }$

## Example close all;
clear all;
clc;

%% Parameters

% Coordinates of point O
O=[0;0;0];
% Coordinates of point A
A=[1;2;0];
% Coordinates of point B
B=[3;1;0];

% Force applied at point A
FA=[0;2;0];

%% Compute torque

% Compute vector OA
vOA=A-O;
% Compute torque at point A
TO=cross (vOA,FA);

%% Compute force at point B

vOB=B-O;
FB=cross(TO,vOB)/(norm(vOB)*norm(vOB));

%% Draw system

plot3(O(1),O(2),O(3));
hold on;
line ([O(1) A(1)],[O(2) A(2)],[O(3) A(3)]);
line ([O(1) B(1)],[O(2) B(2)],[O(3) B(3)]);
text(O(1)+0.2,O(2)+0.2,O(3)+0.2,'O','FontSize',100);
text(A(1)+0.2,A(2)+0.2,A(3)+0.2,'A','FontSize',100);
text(B(1)+0.2,B(2)+0.2,B(3)+0.2,'B','FontSize',100);

% Draw force at point A

% Draw torque at point O